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EQUATION OF STATE FOR SOFT 
REFERENCE SYSTEM 

K. N. KHANNA and ABDUL QUAYOUM 

Department of Physics, V.S.S. D. College, Kanpur, India 

(Receioed 5 January 1993) 

We present an analytical equation of state for soft reference system such as liquid alkali metals. 
Thermodynamic properties-Excess entropy and diffusion coefficient have been calculated for liquid alkali 
metals using this equation of state. The calculated values of the self diffusion constant are compared with 
those corresponding to a hard-sphere fluid which shows that the softness plays a significant role in reducing 
diffusion. 

KEY WORDS: Pair correlation function at  hard sphere contact, softness in pair potential. 

1 INTRODUCTION 

Since the equation of state is one of the most fundamental characteristic of condensed 
matter, the search for accurate equation of state for hard sphere fluid continues being 
an open question. The equations of state can be obtained from integral equation 
theory proposed by Thiele and Werfheim’32, solution of the Percus-Yevick equation 
(PY). However, Percus-Yevick solution fails to predict the high density “Monte 
Carlo” experimental data with enough accuracy. The PY approximation leads to a 
slight overestimate of the height of the main peak in the structure factor S(q)  and 
tends to predict a large space between successive peaks. In recent past, several 
workers3-’ have tried to correct Percus-Yevick solution, such approach is known as 
hard sphere Yukawa reference system. In this system the Yukawa potential is 
repulsive and therefore give rise to a “softening” of the potential. Equation of state 
(EOS) can also be related with the radial distribution function by a value when the 
spheres are in contact. Nevertheless, in spite of the evident simplicity of this (H.S.) 
system, there is no exact solution for the EOS at high or moderate densities. The 
majority of the equations of state proposed for representing the behaviour of the 
hard sphere fluid can be divided into two forms, independently for its dimensionality. 
The first one is in the analytical form such as PY-compressibility, PY-virial and 
Carnahan-starling EOS, having pole at q = 1. The second one determined by the 
coefficients Bi in the infinite virial series expansion of the compressibility factor in 
powers of the density. The objective of the present work is to give simple analytical 
EOS which represents the behaviour of the systems having soft repulsive pair 
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162 K .  N.  KHANNA A N D  ABDUL Q U A Y O U M  

potential such as liquid alkali metals. This EOS has also been used to calculate 
thermodynamic properties of liquid alkali metals. 

2 VARIOUS EQUATIONS OF STATES 

At present, several equations of state (EOS) are available for a system of hard sphere 
which stem from different theories and methods. 

The virial series seems to converge slowly and therefore require the infinite virial 
series expansion coefficients of the compressibility factor 2 in powers of the density 
p = N / K  I t  can be written as6 

D 

substituting various values of Bi available in the literature7, we get 

= 1 + 4r] + + 0.28695(4~)~ + 0.1 10252(4~)~ + 0.0389(4~)~ 

+ 0.0137(4~)~  + 0.0045166(4r])7 + O.O014954(4r])* + 0.0004997(4q)9 (2) 

where r]  is the packing fraction. The equation of state is also directly related with 
radial distribution function y(r), as 

where y(a) is the pair distribution function of hard sphere at contact. From Eqs. (2) 
and (3), we get 

d o )  = 1 + 2 . 5 ~  + 0.28695(4~)’ + 0.1 10252(4r])j + 0.0389(4~)~  

+ O.O137(4r])’ + 0.0045166(4r])6 + O.O014954(4r])’ 

+ 0.004997(4r])8 (4) 

Another possibility is the choice of equation of state with a pole, r]  = 1. Several 
theoretical equations of state for the hard sphere fluid predict a pole at q = 1 for 
example Percus-Yevick compressibility and PY-virial equations of state8 

1 + 2q + 3 q 2  

(1  - r]I2 
z, = ( 5 )  

and 
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EQUATION OF STATE FOR SOFT REFERENCE SYSTEM I63 

where suffixes c and u refer to the compressibility and virial equation respectively. 
Multiplying Eqs. ( 5 )  and (6)  by factors 4 and respectively and adding them, 
we obtain the well known Carnahan-Starling equation of state' 

1 + r]  + q2 - q 3  

(1 - r ] ) 3  
Z =  

which can also be reproduced in terms of second virial coefficient aslo 

and the value of g(a) is obtained as 

g(a) = 1 -- (1 - 9)3 ( :>I 

(7) 

(9) 

Another set of equations of state are those which can be obtained by improving 
Percus-Yevick equation of state analytically. One such we obtained from Hard 
Sphere Yukawa direct correlation function (dcf)  proposed by Colot et aL5 They 
postulated a semi-empirical expression for dcfof a HS fluid which they obtained by 
mixing the dcfof Percus-Yevick with the dcfof the Yukawa tail producing the simple 
Fourier-transformed dcf as 

where a and b are the functions of the packing fraction5. The long-wavelength 
limit of the structure factor is given by 

d2 
= [l - aC,y(O) - 

By integrating Eq. (ll),  we get the expression for the equation of state for the 

a(l + r]  + r] ' )  

HSY system 

(12) 
12b(l + d)q - P -- 

PkT - - a  + (1 - d3 d2 

If we substitute a = 1 and b = 0, we get Eq. (6). For the calculations of thermo- 
dynamic properties of liquid metals, we have included perturbation q51(q) in Ran- 
dom Phase approximation as 
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164 K. N. KHANNA AKD ABDUL QUAYOUM 

For 41(q), the Fourier transform of Cummings potential is used and the final 
result is 

where x i ,  x,, a,  and a, are the parameters 
of g(a) is calculated in this case as 

of Cummings potential"*'2. The value 

g(a) = 1 [L - 1 1  
4q pkT 

Similarly. Zhou and StellI3 proposed an equation of state. We know that the 
contributions to the pair correlation function h(r) and dcfC(r) that have come to be 
known as the bridge function b(r) and tail function d(r) .  These play an essential role 
in improving the hypernetted chain (HNC) and Percus-Yevick approximation. Zhou 
and Stell'3 applied the zero-separation theorem to obtain these functions and 
proposed an equation of state as 

where P," and Pfly are the pressures obtained from the compressibility equation 
and the virial equation in PY approximation respectively. They have proposed 
6 = a + i q  as the best approximation. Hence 

Recently, Maeso ef al. ' have proposed an equation of state expressed in the form 
of virial series as 

1 
- - [ l  + 211 + 3q2 + 2 . 3 6 4 8 ~ ~  + 1.4944~' + 1 . 7 5 0 4 ~ ~  + 4 . 6 7 2 ~ ~ 1  (18) 

(1  - V I 2  

3 RESULTS AND DISCUSSION 

The calculated values of the equations of state described in Section 2 are tabulated 
in Table 1 for different values of packing fraction ti. We find that all these equations 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



EQUATION OF STATE FOR SOFT REFERENCE SYSTEM 165 

Table 1 Values of various equations of state at different values of q. 

0.05 
0.1 
0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

~~ ~~ 

1.2275 
1.5226 
1.9092 

2.42 18 

3.1111 

4.0524 

5.3618 

7.2222 

9.9323 

14.000 

20.3290 

30.625 

~ 

1.2273 
1.5 198 
1.8983 

2.391 I 

3.0398 

3.9907 

5.0804 

6.7100 

9.0288 

12.4302 

17.6065 

25.8456 

1.2274 
1.5214 
1.9038 

2.4055 

3.0694 

3.9580 

5.1628 

6.8222 

9.1518 

12.5000 

17.4536 

25.0562 

1.2274 
1.5216 
1.9049 

(1.9050) 
2.4084 

(2.4096) 
3.0748 

(3.0813) 
3.9621 

(3.9873) 
5.1483 

(5.2283) 
6.7356 
(6.9554) 
8.8568 
(9.3972) 
11.6812 

(12.8979) 
15.421 2 

(17.971 7) 
20.3402 

(25.3719) 

1.2274 
1.5213 
1.9037 

2.4063 

3.0740 

3.9737 

5.2057 

6.9259 

9.3847 

13.000 

18.5034 

27.25 

1.2274 
1.5216 
1.9050 

2.4096 

3.08 I I 

3.9869 

5.2286 

6.9630 

9.4392 

13.0668 

18.5438 

27.1 168 

of state estimate almost same values up to q = 0.35 beyond which they differ starting 
from the range of liquid metal densities to higher densities. Among these equations 
of state, PY approximation [Eq. 61 shows higher values while virial series drops to 
lower values at higher densities when calculated up to seven terms. This difference 
is more pronounced beyond = 0.55 beyond liquid metallic range. Braketted values 
in the same column are the values when ten terms are included in virial series (Eq. 
2). The Carnahan-Starling (Eq. 7) and Maeso et at. (Eq. 18) equations of state lie in 
between PY and the soft reference equations of state (Eqs. 14 and 17). Thus, we find 
that these equations of state differ significantly at higher densities and the equation 
of state of the substances haing soft repulsive pair potential such as liquid alkali 
metals can neither be represented by PY approximation nor by C .  S equation of 
state. However, Eq. (2) predicts almost same values at higher densities as those 
obtained by Eqs. (14 and 17), representing equations of state for substances having 
soft repulsive pair potential. The influence of softness and perturbation potential over 
PY approximation can be obtained by writing equation of state as14 

P 
-- - 1 + 4qg(a) - 
P k T  

P Q ( P )  

where g(a) is the pair correlation function at hard sphere contact for PY approxima- 
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tion. Equating Eq. (19) with our equation of state (Eq. 14), we find 

K. N .  KHANNA AND ABDUL QUAYOUM 

where 

Now, we turn to calculate thermodynamic properties of liquid alkali metals using 
our equation of state. In such calculations, we have to select the value of packing 
fraction q. In our earlier work12, the value of q is obtained by fitting the first peak 
of the structure factor at different temperatures, this essentially means an adjustment 
of the hard sphere diameter 6. At higher temperatures, we have maintained the 
uniqueness of the screening parameters while the hard sphere diameters are supposed 
to be density dependent. We prefer to select q by structural propertyI2 rather than 
selecting q by fitting with an experimental value of a thermodynamic property or by 
a variational approach, to correlate the structural and thermodynamical properties. 
Firstly, we calculate the value of p Q ( p )  (Eq. 20) for liquid alkali metals. Table 2 reveals 
that p Q ( p )  increases with increase of the packing fraction and its value decreases with 
the increase of temperature. 

The entropy of dense fluid is of great interest in understanding several properties 
of liquid metals, we can obtain excess entropy, relative to the ideal gas at the same 
density, quite forwardly once the equation of state is known. 

S'" 
N K  
_ -  - [ S ( p )  - S'de"'(p)]/Nk 

Solving Eq. ( 2  ) for our equation of state i.e. Eq. (14), we obtain 

3a 1 3a 12b(l + d) + a ln(1 - q )  + - + v _ _ - _ _ _  S'" 

N K  2 ( 1  - q)2 2 d2 
_ -  

The calculated values of excess entropies of liquid alkali metals at the melting 
temperature are found closer to those obtained by using high temperature approxima- 
tion of the optimised random phase approximation (ORPA)15 (See Table 4 of 
reference 15). Recently, Regnaut compared the variational approach (VA) with the 
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ORPA (perturbation expansion) in case of simple metals, by examining the essential 
difference for various thermodynamic quantities. In the alkalis, the difference between 
the VA and the ORPA comes from the estimation of the soft ranged repulsive forces 
and long range oscillations. Since in our equation of state both the softness of the 
core and the oscillations are considered, it seems to confirm the findings of Regnaut’s 
work. Braketted values are the experimental values of excess entropy at the melting 
temperature. 

We also know that the equation of state is directly related with g(a), pair correlation 
function at hard sphere contact, it can be used to calculate diffusion coefficient as16 

The Eq. (23) does not include the term due to back scattering. There is no simple 
way of computing back-scattering term for hard sphere fluid. However, we can follow 
the results of computer experiments for hard sphere system by introducing a factor17 
(= 0 .33 /~ )  in Eq. (23) as 

The values of y(o) and hence diffusion coefficients are calculated using our equation 
of state (Eq. 14) for liquid alkali metals at different temperatures, and the results are 
tabulated in Table 2. We have also compared the value of g(a) for virial series 
considering first six terms at the same packing fractions. We find exactly same values 
of g(n) as those obtained by our equation of state. It means that six terms are sufficient 
to calculate the properties of liquid metals particularly for soft reference system. For 
higher densities, we can include more terms to obtain correct g(o). Considering nine 
terms in g(o) (Eq. 4), the values become closer to C.S. results. The values of the 
diffusion coefficient obtained from Eqs. (4), (14) and (17) are almost same and close 
to the experimental results. I t  is interesting to compare our results for the Yukawa 
fluid with those obtained for hard sphere molecular dynamic results. Speedy” 
proposed an equation for hard sphere obtained from computer simulation as 

& = (?)( 1 - $)(I + n’(0.4 - 0.83n2)) 

where n = pa3 and Do = ( ~ ) a ( k T / m ~ ) ” ~ ,  a is the hard sphere diameter. We find that 
the values of the diffusion constant for Yukawa fluid are smaller than these from 
hard sphere fluid which showed that the cohesive part of the intermolecular potential 
plays a significant role in reducing diffusion. Similar trends are observed in the recent 
work of Rey et al. 19. 
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